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ABSTRACT 

In this paper, the use of 2D discrete wavelet transform (DWT) based wavelet denoising technique (WDT) is 

demonstrated experimentally to improve the signal-to-noise ratio (SNR) of the measured Brillouin gain spectra 

(BGSs) obtained along a 38. 2 km long fiber using Brillouin optical time domain analysis (BOTDA) sensor. The curve 

fitting method (CFM) was then applied to extract the distributions of Brillouin frequency shift (BFS) from the 

denoised BGSs. The performance of WDT-based CFM is evaluated in detail for the measured BGSs acquired with 

different frequency steps and different numbers of trace averaging. The variation of sensor spatial resolution with 

different decomposition levels adopted in WDT was also analyzed. The results showed that WDT can enhance the 

SNR of measured BGSs significantly. As a result, WDT-based CFM can improve the uncertainty in BFS extraction 

up to ~56% without sacrificing the spatial resolution as well as signal processing speed as compared to CFM without 

WDT. However, the measurement uncertainty can be improved further with a little sacrifice of spatial resolution. 

Moreover, under a given measurement uncertainty and spatial resolution, the WDT-based CFM can significantly 

reduce the acquisition time of BGSs by effectively adopting 5 times larger frequency step or 87. 50% less number of 

trace averaging to make BOTDA sensors suitable for faster operation.  

Keywords: Distributed fiber optic sensors, Stimulated Brillouin scattering, Discrete wavelet transform, Least-square curve fitting, 

Lorentzian profile.  

 
1. Introduction 

Stimulated Brillouin scattering based Brillouin optical 

time domain analysis (BOTDA) sensors have been widely 

used in the past few decades for the distributed monitoring 

of strain and temperature along an optical fiber of several 

tens of kilometres with high accuracy and good spatial 

resolution [1 - 4]. In Brillouin gain configuration of such 

systems, two counter-propagating light waves (i. e. , pump 

and probe) induce an acoustic wave which scatters the 

pump wave through the process of electrostriction [5]. As 

a result, the power from the high frequency pump wave is 

transferred to amplify the low frequency probe wave. The 

power gained by the probe wave is characterized by the 

local Brillouin gain spectrum (BGS). The local BGS 

experiences maximum gain if the pump-probe frequency 

difference and the local Brillouin frequency shift (BFS) of 

the fiber under test (FUT) are exactly the same. In 

BOTDA sensor, the BFS along the FUT varies linearly 

with local strain or temperature. This linear relationship is 

utilized to extract distributed strain or temperature along 

the FUT.  

The accurate extraction of BFS distributions in BOTDA 

sensors depends mainly on the SNR of the BGSs and 

BOTDA trace averaging is usually used to enhance the 

SNR [6, 7]. However, sufficient improvement of such SNR 

can only be achieved if thousands of BOTDA traces are 

acquired during experiment and all of these traces are then 

averaged to obtain a single trace. In such case, the 

acquisition of BGSs during experiment becomes time-

consuming, particularly for a longer FUT. For the fast 

acquisition of BGSs, several alternative BOTDA schemes 

assisted by Raman amplification [8 - 10], pulse coding 

techniques [11 - 13] and combination of these [2, 14] have 

been studied recently to enhance such SNR. However, these 

alternative BOTDA schemes either require the 

modifications of hardware in the basic BOTDA setup or 

combine multiple techniques with basic BOTDA setup to 

build complex systems. On the other hand, the processing 

of signal using non-local means [15, 16] and wavelet 

transform [15 - 17] have also been studied in recent years 

for denoising the BGSs acquired from BOTDA sensors.  

In particular, studies reported in [15 - 17] apply wavelet 

denoising technique to enhance the SNR of the BGSs and 

hence, uncertainty in BFS extraction by several orders of 

magnitude. Such technique employs forward-DWT to 

decompose the noisy signals into various sub bands 

comprising high and low frequency wavelet coefficients. 

The high frequency coefficients are then modified using 

thresholding operation and denoised signals are obtained 

through inverse-DWT with the modified coefficients [18 - 

20]. In use of such technique for BOTDA sensors, the 

decomposition of BGSs with higher level results more SNR 

enhancement, which in turn reduces the uncertainty in BFS 

extraction. However, such SNR enhancement is attained by 

thresholding high frequency wavelet coefficients of the 

measured BGSs [19, 20]. This thresholding operation can 

over-smooth the BGSs, particularly where the BFSs of the 

BGSs change sharply. Thus, higher enhancement of SNR 

achieved by decomposing measured BGSs with higher level 

also affects the spatial resolution of BOTDA sensors. 

Surprisingly, the consequence of decomposing measured 

BGSs with different levels used in wavelet denoising 

technique (WDT) on spatial resolution of sensors is not 

analyzed adequately in literature.  



2  Abul Kalam Azad 

In this paper, the detailed performance of 2D DWT-based 

WDT is evaluated experimentally in denoising the noisy 

measured BGSs obtained from a BOTDA sensor along a 

38. 2 km fiber. The CFM was then used to extract the 

distributions of BFS from the denoised BGSs. The 

advantages of using WDT-based CFM are analyzed for the 

BGSs acquired from BOTDA experiment using different 

frequency steps and different numbers of trace averaging. 

The effect of decomposing measured BGSs with different 

levels applied in WDT on spatial resolution of the sensor is 

also analyzed in this study.  

2. BOTDA Experimental Setup 

The experimental setup used in the laboratory in this study 

was a conventional [6, 7] BOTDA sensor as shown in the 

Fig. 1. The tunable laser used in the setup emits continuous 

wave (CW) at 1550 nm. Then the coupler splits the output 

of the laser and provides CW waves in the upper and lower 

branches. The polarization controllers (PC1 and PC2) in the 

two branches help to control the polarization states of CW 

waves. The pulse generator (PG) operates an electro-optic 

modulator (EOM1) for producing pump pulses by 

modulating the CW wave in the upper branch. Then an 

erbium-doped fiber amplifier (EDFA) is utilized to amplify 

the pulse power. The EDFA is followed by a band pass 

filter (BPF) whose function is to remove the amplified 

spontaneous emission (ASE) noise. Finally, the polarization 

scrambler (PS) in the upper branch is used to randomize the 

polarization states of the pump-pulses.  

 

Fig. 1. Experimental setup of a conventional BOTDA sensor.  

The radio-frequency (RF) signal generator in the lower 

branch controls another electro-optic modulator (EOM2). 

This EOM2 also modulates the CW wave but produces a 

double-side band suppressed-carrier probe signal in the 

lower branch. Then the variable optical attenuator (VOA) is 

employed to control the power of the CW probe signal and 

the isolator directs the probe signal in the forward direction 

through the FUT but prevents signal transmission from the 

backward direction.  

Because of the interaction of counter-propagating pump and 

probe waves in the fiber, the probe signal is amplified. Then 

a fiber Bragg grating (FBG) filter allows only the desired 

low-frequency side band of the amplified probe signal to be 

detected by the photo detector (PD). The output of the PD is 

scanned subsequently at a particular pump-probe frequency 

difference around the local BFS of the FUT to obtain time-

domain traces. These traces are then used to retrieve the 

BGSs along the FUT.  

3. Operating Principle 

3. 1 Discrete Wavelet Transform (DWT) 

Wavelet transform is a powerful mathematical tool that is 

widely used for time-frequency analysis of signals [16 - 18]. 

The continuous wavelet transform (CWT) of a continuous-

time signal x(t) is expressed as  
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where p and q, p ≠ 0 and (p,q) ∈R, are the dilation and 

translation parameters of the mother wavelet function ψ(t) 

respectively. To formulate DWT from CWT, parameters p 

and q are discretized in dyadic form as p=2
-j
 and q=k2
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where (j, k) ∈Z. For such p and q, Eq. (2) can be used to 

express the discrete wavelet function as given by 
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In Eq. (3), j is the dilation parameter which affects the 

scaling process and k is the translation parameter which 

affects the shifting process of the discrete wavelet function. 

With these two parameters j and k, a basis can be formed 

from the scaling and the wavelet functions given 

respectively by 
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Now, the functions given by Eqs. (4) and (5) can be applied 

to decompose any discrete-time signal x(n) which yields 
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where n = 0, 1, 2,…, M-1 and j0 is an starting scale. Since 

ϕj0,k and ψj,k are orthogonal to each other, the inner product 

can simply be used to obtain the approximation and detailed 

wavelet coefficients of x(n) as given respectively by 
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It is worth to mention that the DWT can simply be realized 

via filter bank comprising low-pass and high-pass filters [17 

- 18]. It is also easy to realize the 2D DWT from 1D DWT. 

For such realization, the filter bank structure of 1D DWT is 

successively applied along the rows and columns of a 2D 

discrete-time function [18 - 19].  

3. 2 Wavelet Denoising Technique (WDT) 

Wavelet denoising technique (WDT) makes use of wavelet 

transform for multi-resolution analysis of signals and 

images. The technique is easy to implement and 
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computationally efficient [18 - 22]. In this study, the 

BOTDA experimental setup shown in Fig. 1 is used for the 

acquisition of measured BGSs. The noisy measured BGSs 

are then denoised by employing 2D DWT-based multi-

threshold WDT. The process of denoising BGSs using 

WDT is depicted in Fig. 2.  

 

Fig. 2. Schematic diagram of WDT for denoising BGSs.  

The process of WDT for denoising measured BGSs requires 

three steps. First, the measured BGSs are decomposed into 

sub bands by using forward-DWT. Then, level dependent 

thresholds are calculated and thresholding operation is 

performed to eliminate noise components. Finally, inverse-

DWT is used on the thresholded sub bands to reconstruct 

the denoised BGSs. The first level decomposition (i. e. , L = 

1) of noisy measured BGSs provides four sub bands, i. e. , 

approximation, horizontal detail, vertical detail and 

diagonal detail. The larger wavelet coefficients in the 

approximation sub band generally include main attributes 

of the BGSs. Other three detail sub bands mainly contain 

comparatively smaller wavelet coefficients and consist of 

noise attributes [18, 19]. For the multi-resolution analysis of 

noisy measured BGSs, a higher decomposition level (e. g. , 

L > 1) is adopted in WDT to obtain four new sub bands in 

each level by repeatedly decomposing the approximation 

sub band provided by the immediate previous level of 

BGSs decomposition.  

Once the process of BGSs decomposition is over, Birgé-

Massart strategy [18, 21] is used to calculate the thresholds 

for different detailed sub bands obtained after different 

levels of BGSs decomposition. Since the SNR of the noisy 

measured BGSs degrades gradually through the FUT, such 

BGSs along a small (e. g. , 1 km) span of the FUT are 

denoised using WDT so that the level dependent thresholds 

can be calculated precisely. Soft thresholding operation [21] 

is then performed only on the wavelet coefficients in detail 

sub bands, i. e., no thresholding operation on the wavelet 

coefficients in approximation sub band. Finally, the 

inverse-DWT is applied on the approximation sub band 

having unchanged wavelet coefficients and detail sub bands 

having modified wavelet coefficients to reconstruct the 

denoised BGSs. In the processes of decomposition and 

reconstruction of BGSs, the mother wavelet function 

symlet5 is used in this study.  

3. 3 Curve Fitting Method (CFM) 

After performing the process of BGSs denoising using 

WDT, BFS distributions along the FUT are extracted from 

the measured and denoised BGSs by using nonlinear least-

square CFM. In CFM, Lorentzian profile [17, 23] given by 
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is employed as the model function, where gB is the peak 

Brillouin gain, υB is the BFS and ΔυB is the linewidth of the 

model function. The model function controlled by the 

vector u = [gB, νB, ΔνB] is fitted on to N sample points of a 

measured or denoised BGS so that the vector u is updated 

iteratively and the error function given by 
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is minimized. At the end of this fitting process, the updated 

υB of the model function in the vector u is supposed to be the 

BFS of the measured or denoised BGS. A short description 

and illustration of CFM can be found in Ref. [23].  

4. Results and Discussion 

In this study, the FUT used in the experimental setup of 

BOTDA sensor shown in Fig. 1 is 38. 2 km long. The last 

~600 m portion of the FUT is unpacked from the fiber 

mandrel and wound manually with a diameter larger than 

that of the fiber mandrel. The unpacked ~600 m FUT is 

then put inside the oven. The temperature of the oven is set 

at 70
 o

C. Other portion of the FUT packed tightly on the 

fiber mandrel is kept outside the oven at room temperature 

of ~25
 o

C. The measured BGSs throughout the whole FUT 

of 38. 2 km long are acquired using the sampling interval of 

0. 4 m and the pump pulse duration of 20 ns for obtaining 2 

m spatial resolution of the sensor. The distribution of BGSs 

acquired using trace averaging of Nav = 100 and frequency 

step of Δυ = 1 MHz is shown in Fig. 3(a). The WDT is then 

used to denoise the noisy measured BGSs shown in Fig. 

3(a). Such denoising process is repeated by adopting six 

different levels (i. e. , L = 1 to 6) of BGSs decomposition in 

WDT. For example, the distributions of denoised BGSs 

obtained by using WDT with L = 2, 4, and 6 are shown in 

Figs. 3(b)-(d), respectively.  

 

Fig. 3. Distributions of (a) the noisy measured BGSs, and the 

denoised BGSs along the 38. 2 km long FUT obtained by using 

WDT with different levels of BGSs decomposition of (b) L = 2, 

(c) L = 4 and (d) L = 6.  
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It was observed from the distributions of measured and 

denoised BGSs in the Fig. 3 that 2D DWT-based WDT can 

reduce noise significantly from the noisy measured BGSs. 

It is remarkable in the Fig. 3 that WDT with higher level of 

BGSs decomposition also provides lower level of noise in 

the denoised BGSs.  

Next, curve fitting method (CFM) was employed for 

extracting BFS distributions from the noisy measured and 

denoised BGSs throughout the whole span of 38. 2 km 

FUT. The distribution of BFS along the FUT for the noisy 

measured BGSs shown in the Fig. 3(a) without applying 

WDT is plotted in the Fig. 4(a). The distributions of BFS 

from the denoised BGSs throughout the whole span of the 

FUT are also extracted separately after applying WDT with 

L = 1 to 6, i. e. , six different levels of BGSs decomposition. 

For instance, the distributions of BFS for the denoised 

BGSs along the FUT shown in Figs. 3(b)-(d) obtained after 

employing WDT with L = 2, 4 and 6 are plotted in Figs. 

4(b)-(d), respectively.  

 

Fig. 4. BFS distributions along the 38. 2 km long FUT for (a) the 

noisy measured BGSs, and the denoised BGSs obtained by using 

WDT with different levels of BGSs decomposition of (b) L = 2, 

(c) L = 4 and (d) L = 6. Inset: BFS distributions along the last 1200 

m portion of the FUT.  

It is clear from the Fig. 4 that the BFSs along the FUT in 

the Fig. 4(a) extracted from the noisy measured BGSs 

without utilizing WDT fluctuate largely as compared to that 

extracted from the denoised BGSs obtained after utilizing 

WDT in Figs. 4(b)-(d). In addition, such fluctuations in 

Figs. 4(b)-(d) decrease greatly when WDT adopts higher 

level of BGSs decomposition and become significantly 

smaller for L = 6, the highest level of BGSs decomposition 

adopted in this study. Thus, the uncertainty in BFS 

extraction using CFM decreases largely when WDT with 

higher decomposition level is adopted to denoise the noisy 

measured BGS. It is noteworthy that the relatively large 

fluctuations in the extracted BFS distributions in Fig. 4, 

especially at the beginning of the FUT are originated owing 

to the existence of irregular strain along the FUT packed 

tightly on the fiber mandrel where, the diameter of the 

packed fiber at the beginning is relatively small (i. e. , more 

strain) than that at the end of the FUT.  

The distributions of BGSs in Fig. 3 and their BFS 

distributions in Fig. 4 indicate that WDT can enhance the 

measurement SNR significantly and thus, the uncertainty in 

BFS extraction reduces greatly. To assess the performance 

of WDT quantitatively, the SNRs of the noisy measured 

and denoised BGSs and the corresponding uncertainties in 

BFS extraction are calculated. For this calculation, the last 

500 m portion (worst SNR and uncertainty) of the FUT 

starting from 37. 7 km to 38. 2 km heated at 70
o
 C inside 

the oven is considered. The SNR for a BGS is calculated to 

be the ratio of maximum gain of its fitted curve and the 

standard deviation of its residuals from the fitted curve 

[7,16]. The calculated SNRs for all the BGSs within the 

selected 500 m portion the FUT are then averaged to 

estimate the SNR for the portion. To determine the 

uncertainty in BFS extraction, the standard deviations of the 

extracted BFSs along the portions of few meters (e. g. , 25 

m) within the last 500 m FUT [6] are computed. The 

uncertainty is then calculated by averaging the nearly equal 

standard deviations for all portions within the last 500 m 

fiber. The SNRs and uncertainties for the noisy measured 

BGSs without using WDT (i. e. , L = 0) and denoised BGSs 

obtained using WDT with L = 1 to 6 are shown in Fig. 5.  

 

Fig. 5. Variation of SNR of BGSs and uncertainty in BFS 

extraction for the decomposition of BGSs with different levels, L  

in WDT.  

It is evident from Fig. 5 that the use of WDT helps to obtain 

several times improvement of the measurement SNR, which 

in turn reduces the uncertainty in BFS extraction 

significantly. For example, the SNR in Fig. 5 calculated for 

the noisy measured BGSs without applying WDT (i. e. , L = 

0) is ~5. 88 dB which is improved by an amount of ~4. 23 

dB, ~6. 75 dB and ~8. 09 dB (i. e. , by the factors of ~2. 65, 

~4. 73 and ~6. 45 respectively) for adopting L = 2, 4 and 6 

in WDT. For such improvement of SNR, the uncertainty in 

BFS extraction is reduced from ~1. 43 MHz to ~0. 63 MHz, 

~0. 32 MHz and ~0. 23 MHz (i. e. , by the factors of ~2. 27, 

~4. 47 and ~6. 32 respectively) for applying WDT with L = 

2, 4 and 6.  

The results shown in Fig. 5 clearly reveal that the 

decomposition of BGSs in WDT adopting higher level (L) 

expedites the enhancement of SNR which, in turn reduces 

the uncertainty in BFS extraction. However, the use of 

higher L in WDT can greatly instigate the loss of the high 

frequency wavelet components to make the BGSs over-

smoothed, particularly where the BFSs of the BGSs change 

sharply [19, 20]. As a result, the spatial resolution of the 
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sensors can also be affected due to the adaptation of higher 

L in WDT. To study this effect, the distributions of BFS 

along the portion of the FUT where the BFSs of the BGSs 

change sharply from ~25
 o

C to 70
 o

C are extracted by 

adopting different L in WDT. Such distributions of BFS are 

shown in Fig. 6. The results show that the lower level 

decomposition (e. g. , L = 1 and 2) of BGSs in WDT can 

maintain the actual spatial resolution of the sensor. 

However, it is also needed to sacrifice the spatial resolution 

of the BOTDA sensor if the decomposition level adopted in 

WDT is greater than L = 2.  

 

Fig. 6. Variation of spatial resolution of the sensor for the 

decomposition of BGSs with different levels, L  in WDT.  

The BFS distributions shown in Fig. 6 signify that the 

highest decomposition level of L = 2 can safely be 

employed in WDT for denoising the noisy measured BGSs 

so as to maintain the 2 m spatial resolution of the sensor 

adopted in this study. The decomposition of BGSs using 

such level (i. e. , L = 2) in WDT can reduce the uncertainty 

in BFS extraction from ~1. 43 MHz to ~0. 63 MHz (i. e. , 

~56%) as can be observed from Fig. 5. However, it is also 

noticed in Fig. 5 that the uncertainty in BFS extraction can 

be reduced further from ~1. 43 MHz to ~0. 23 MHz (i. e. , 

~84%) for L = 6. In such case, the BFS distributions in Fig. 

6 indicate that the actual spatial resolution (i. e. , 2 m) of the 

sensor cannot be guaranteed.  

Now, the WDT-based CFM is applied to the measured BGSs 

acquired at different frequency steps (Δυ) for evaluating the 

performance of this method. For this, the noisy measured 

BGSs at ten different frequency steps of Δυ = 1 to 10 MHz 

are obtained by down-sampling the noisy measured BGSs 

shown in Fig. 3(a) obtained at Δυ = 1 MHz and Nav = 100. 

Such BGSs are first denoised separately by applying WDT 

with different levels of BGSs decomposition and then the 

CFM is employed to extract the BFS distributions from the 

measured and denoised BGSs for each Δυ and L. The 

uncertainties in BFS extraction within the last 500 m FUT for 

different Δυ and L are shown in Fig. 7. 

It is noticed from the Fig. 7 that the uncertainty in BFS 

extraction for applying CFM with WDT is considerably 

smaller as compared to that without applying WDT at each 

of the ten different frequency steps and the uncertainty 

increases gradually for the BGSs acquired at larger 

frequency step. For instance, the uncertainty in BFS 

extraction without employing WDT to the measured BGSs 

acquired at Δυ = 5 MHz in Fig. 7 is 3. 32 MHz, which 

decreases to 1. 41 MHz for employing WDT with L = 2. 

Thus, the denoising of BGSs obtained at Δυ = 5 MHz 

employing WDT with L = 2 can improve the uncertainty in 

BFS extraction by a factor of ~2. 39 (i. e. , ~58%). It is also 

noticed from Fig. 7 that the uncertainty in BFS extraction 

for employing WDT with L = 2 to the noisy measured 

BGSs obtained at Δυ = 5 MHz is 1. 41 MHz, which is 

comparable to the uncertainty of 1. 43 MHz for the noisy 

measured BGSs acquired at Δυ = 1 MHz without 

employing WDT. However, such arrangement with WDT 

permits the use of 5 times larger frequency step to acquire 

BGSs from the BOTDA experiment and thus, the 

acquisition time can greatly be reduced by ~80%.  

 

Fig. 7. Variation of uncertainty in BFS extraction with frequency 

step used to obtain the BGSs at trace averaging number of Nav = 

100.  

Next, the WDT-based CFM is applied to the noisy 

measured BGSs acquired using ten different numbers of 

trace averaging starting from Nav = 100 to 1000 to evaluate 

the performance of the method. For this evaluation, the 

measured BGSs of each of the ten different Nav obtained at 

Δυ = 1 MHz are denoised individually by employing WDT 

with different levels of BGSs decomposition. Then, the 

CFM is employed for extracting the BFS distributions from 

the measured and denoised BGSs for each Nav and L. The 

uncertainties in BFS extraction given by CFM with WDT 

for adopting different L and that without employing WDT 

are then computed for the last 500 m portion of the FUT. 

The variations of uncertainty with Nav for different level of 

BGSs decomposition in WDT are shown in Fig. 8.  

 

Fig. 8. Variation of uncertainty in BFS extraction with number of 

trace averaging used to obtain the BGSs at frequency step of Δυ = 

1 MHz.  
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The results in the Fig. 8 demonstrate that the uncertainty 

in BFS extraction decreases gradually when large number 

of trace averaging was adopted to improve the SNR of the 

measured BGSs [6, 7]. It was evident from Fig. 8 that the 

CFM with WDT provide much lower eruncertainty in BFS 

extraction at each level of BGSs decomposition as 

compared to that without applying WDT (i. e. , L = 0). 

The results in Fig. 8 also confirm that the uncertainty in 

BFS extraction decreases significantly when higher level 

of BGSs decomposition is adopted in WDT. However, the 

BFS distributions in Fig. 6 confirm that the BGSs 

decomposition level up to L = 2 could only ensure the 

preservation of spatial resolution. For using WDT with L 

= 2, the uncertainty in extracting BFS from the noisy 

measured BGSs obtained using Nav = 100 is ~0. 63 MHz, 

which is comparable to that of ~0. 70 MHz using Nav = 

800 without employing WDT. Consequently, WDT with L 

= 2 can provide comparable performance by adopting 87. 

50% less trace averaging, which help to significantly 

reduce the time required to acquire BGSs from the 

BOTDA experiment.  

Finally, the computational complexity and runtime of 

WDT-based CFM are analyzed and evaluated quantitatively 

in extracting BFS distributions from the noisy measured 

BGSs. The computational complexity of 1D DWT is on the 

order of O(L) if L is the number of sample points in a 1D 

signal [24]. In 2D DWT, the 1D DWT is alternatively 

applied first on the each row and then on the each column 

of the noisy measured BGSs. The computational 

complexity of 2D forward-DWT used to obtain wavelet 

coefficients by decomposing M BGSs each having N 

sample points into different sub bands thus becomes on the 

order of O(MN). Since the reconstruction of the denoised 

BGSs from the thresholded wavelet coefficients using 

inverse-DWT also requires same computational effort, the 

computational complexity of WDT becomes on the order of 

O(2MN) for denoising M BGSs [25], which is equivalent to 

the computational complexity of O(2N) for each BGS. Each 

of the denoised BGSs obtained with WDT is then fitted 

using nonlinear least-square CFM whose computational 

complexity is on the order of O(ηN
2
) where η denotes the 

number of iterations taken by the CFM to update the model 

parameters [7]. As a consequence, the WDT-based CFM 

suffers from the computational complexity that is on the 

order of O(2N+ηN
2
) in which the major part is introduced 

by the CFM. In order to compare the signal processing 

speed of CFM with applying WDT and that without 

applying WDT quantitatively, the runtimes required to 

extract BFS distributions are computed for the measured 

BGSs obtained with Nav = 100 and ten different frequency 

steps Δυ as well as that with Δυ = 1 MHz and ten different 

trace averaging numbers Nav. The relative runtime is then 

calculated by dividing each of these runtimes by the 

runtime required for the noisy measured BGSs acquired 

with Δυ = 1 MHz and Nav = 100. The variation of relative 

runtime with ten different frequency steps Δυ for Nav = 100 

and that with ten different trace averaging numbers Nav for 

Δυ = 1 MHz are plotted in Fig. 9 and Fig. 10 respectively.  

 

Fig. 9. Variation of relative runtime in BFS extraction with 

frequency step used to obtain the BGSs using trace averaging 

number of  Nav= 100.  

 

Fig. 10. Variation of relative runtime in BFS extraction with 

number of trace averaging used to obtain the BGSs at frequency 

step of Δυ = 1 MHz.  

It is clear from Fig. 9 and Fig. 10 that the relative runtimes 

of using CFM with WDT for different levels (e. g. , L = 2, 4 

and 6) of BGSs decomposition and that using CFM without 

WDT (i. e. , L = 0) are almost the same. The results validate 

that the denoising of noisy measured BGSs using WDT 

does not include significant processing time to the WDT-

based CFM. It is noticed from Fig. 9 that the relative 

runtimes in extracting BFS from the BGSs obtained at 

smaller Δυ are relatively larger than that at higher Δυ. This 

is due to the fact that the number of sample points (N) on 

each BGS obtained using a smaller Δυ is also larger. The 

results in Fig. 10 for Δυ = 1 MHz (i. e. , same N) also shows 

a very little decrease in relative runtime for the BGSs 

obtained using larger Nav. This is due to the fact that SNRs 

of BGSs obtained using larger Nav is also higher. As a 

result, the CFM needs relatively small number of iterations 

(i. e. , smaller η) to fit the measured BGSs acquired with 

larger Nav as compared to that obtained with smaller Nav. 

The results in Fig. 9 and Fig. 10 also confirm that the 

relative run times in BFS extraction using WDT-based 

CFM with different levels (L) of BGSs decomposition do 

not change significantly. This is because a larger L in WDT 

also provides denoised BGSs with larger SNR. As a result, 

the CFM also takes relatively small number of iterations (i. 

e. , smaller η) to fit the denoised BGSs.  

5. Conclusions 

In this paper, the experimental analysis of 2D DWT-based 

WDT is demonstrated for denoising BGSs acquired from 
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BOTDA sensors. The CFM is then applied to the denoised 

BGSs for the accurate extraction of BFS distributions along 

the FUT. The performance of WDT-based CFM is evaluated 

for the noisy measured BGSs acquired from BOTDA 

experiment with different frequency steps and different 

numbers of trace averaging. The effects of decomposing 

BGSs with different levels adopted in WDT are also 

analyzed explicitly and the results suggest that 

decomposition level up to 2 can be safely adopted to improve 

the uncertainty in BFS extraction up to ~56% while 

maintaining the actual spatial resolution of the sensor, which 

is 2 m in this study. However, the decomposition of BGSs 

adopting lager level in WDT allows the further improvement 

of uncertainty in BFS extraction with a little sacrifice of 

spatial resolution. Moreover, under a given uncertainty and 

spatial resolution, BFS extraction using WDT-based CFM 

can effectively adopt either 5 times larger frequency step or 

~87. 50% less trace averaging to significantly reduce the 

acquisition time of BOTDA-measured BGSs. In addition, 

WDT is a computationally efficient algorithm which does not 

include significant signal processing time to CFM. Therefore, 

WDT-based CFM can be an attractive alternative for the 

accurate and faster extraction of BFS distributions from the 

noisy measured BGSs acquired from BOTDA sensors.  
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